Nashidvery.ru

Наши Двери
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

50. Допустимые токовые нагрузки на кабельные линии

§ 50. Допустимые токовые нагрузки на кабельные линии

При прохождении электрического тока по кабелю в нем выделяется значительное количество теплоты за счет потерь мощности в токопроводящих жилах, изоляции, металлических оболочках и броне. Для трехжильных кабелей с бумажной пропитанной изоляцией напряжением до 10 кВ основным источником потерь являются потери мощности в токопроводящих жилах.

Мощность, переходящая в теплоту, за счет нагрева токопроводящих жил током пропорциональна квадрачу его силы и сопротивлению жилы кабеля. Распространение теплоты от жилы кабеля через изоляцию, оболочку и наружные покровы будет происходить за счет теплопроводности этих материалов.

Через некоторый промежуток времени, после включения кабеля под нагрузку, в нем устанавливается тепловое равновесие, когда выделяемое в единицу времени количество теплоты равно количеству теплоты, отдаваемой кабелем в окружающую среду. Установившемуся равновесию соответствует определенное превышение температуры кабеля над температурой окружающей среды.

В установившемся режиме тепловой расчет кабеля можно выразить следующим соотношением:

где Θ — превышение температуры токопроводящей жилы над температурой окружающей среды, °С, ΣS — общее тепловое сопротивление кабеля, град • см/Вт, которое состоит из теплового сопротивления элементов кабеля и окружающей почвы, tж, tcp — температура жилы и среды, град.

Чем меньшее сопротивление оказывается тепловому потоку, тем интенсивнее происходит отдача теплоты в окружающую среду и тем большую нагрузку можно допустить на силовой кабель. Зная допустимую температуру tдоп нагрева жил, можно определить допустимый на кабель ток: _

где R — сопротивление одной фазы линии, Ом, n — количество жил.

В наилучших условиях по отдаче теплоты в окружающую среду находится кабель, проложенный в воде, так как вода обеспечивает хороший отвод теплоты с наружной поверхности кабеля.

При прокладке кабеля в земле отдача теплоты зависит от состава грунта и его способности удерживать влагу.

Токовые нагрузки, приведенные в ПУЭ для кабелей, проложенных в земле, рассчитаны для грунта с удельным тепловым сопротивлением 120 Ом • град/Вт (нормальная почва и песок с влажностью 7—9 % или песчано-глинистая почва с влажностью 12—14%).

Изменение удельного сопротивления земли значительно сказывается на допустимой нагрузке кабеля. Применительно к принятому сопротивлению земли пересчет токовой нагрузки для удельных сопротивлений 80, 200 и 300 Ом град/Вт будет соответственно равен 1,05; 0,87; 0,75. Удельное тепловое сопротивление земли главным образом зависит от ее химической и физической структур, плотности засыпки траншеи и способности удерживать влагу. Поэтому утрамбовывание земли является обязательным технологическим процессом прокладки силового кабеля.

Кабель, проложенный в воздухе, имеет более низкие допустимые нагрузки, чем при прокладке в земле из-за большего сопротивления тепловому излучению от кабеля в воздух. Из-за действия ряда дополнительных тепловых сопротивлений (воздух в канале блока, взаимный подогрев кабелей) в очень неблагоприятных условиях (в отношении нагрева) находится кабель, проложенный в блочной канализации. Чтобы обеспечить правильный температурный режим работы кабеля, необходимо для каждой находящейся в эксплуатации кабельной линии определить и установить допустимые токовые нагрузки для нормального длительного и аварийных режимов.

Допустимые токовые нагрузки для одиночных кабелей, проложенных в земле, воздухе и воде, определяются по таблицам, приведенным в ПУЭ. Таблицы составлены в зависимости от вида изоляции (резина или пластмасса, пропитанная бумага) и материала жилы (медь, алюминий). Токовые нагрузки в таблицах приводятся в зависимости от сечения токопроводящих жил кабеля, поэтому по ним можно решать и обратную задачу, т. е., зная расчетную токовую нагрузку, можно выбрать сечение проводника. Различные условия прокладки и эксплуатации кабельных линий учитываются поправочными коэффициентами, которые также приводятся в ПУЭ.

Для кабелей, проложенных в земле, допустимые длительные токовые нагрузки приняты из расчета прокладки в траншее на глубине 0,7—1 м не более одного кабеля при температуре земли 15°С. Аналогичные условия приняты для кабелей, проложенных в воде.

Для кабелей, проложенных в воздухе, внутри и вне зданий, допустимые длительные токовые нагрузки приняты из расчета температуры воздуха 25 °С. При этом расстояния между параллельно уложенными кабелями должно быть не менее 35 мм в свету. Если температура окружающей среды существенно отличается от принятых температур при расчете токовых нагрузок для кабелей, проложенных в земле и на воздухе, необходимо ввести поправочные коэффициенты, которые приведены в таблице ПУЭ.

В зимних условиях температура земли на глубине прокладки кабелей близка к 0 °С. В соответствии с этим допустимые длительные нагрузки на кабельные линии могут быть увеличены.

Как правило, в траншее прокладывают не один, а несколько кабелей, которые, выделяя теплоту при нагрузках, взаимно нагревают друг друга. Для снижения взаимного влияния кабелей, проложенных в одной траншее (включая прокладку в трубах), необходимо вводить поправочные коэффициенты на количество кабелей, лежащих рядом, которые приводятся в ПУЭ.

Допустимые длительные токи для кабелей, прокладываемых в блоках, определяются по формуле / = abcl, где I — допустимый длительный ток для трехжильного кабеля напряжением 10 кВ с медными или алюминиевыми жилами, который определяется по таблице ПУЭ; а, Ь, с — коэффициенты, выбираемые в зависимости от сечения и расположения кабеля в блоке, напряжения кабеля и среднесуточной нагрузки всего блока.

В большинстве случаев кабельные линии на отдельных участках трассы прокладывают в земле, эстакаде, блоке и т. п. В этих случаях допустимые длительные токовые нагрузки должны быть определены по участку трассы с наихудшими условиями охлаждения, если участок имеет протяженность более 10 м.

Читайте так же:
Длительно допустимый ток кабеля кгэш

Для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией, несущих нагрузки меньше номинальных, допускаются кратковременные перегрузки, приведенные в табл. 18.

Таблица 18.
Допустимые перегрузки кабельных линий напряжением до 10 кВ

Установленные в этой таблице значения перегрузок по току и времени не вызывают перегрева токопроводящих жил сверх допустимых значений. Во время аварийных режимов в кабельных сетях возникает необходимость в кратковременных перегрузках работающих кабелей, нормы которых приведены в ТЭ.

Для кабелей с полиэтиленовой изоляцией допускают перегрузки до 10 % в течение 5 сут продолжительностью до 6 ч в сутки, а для кабелей с ПВХ изоляцией — до 15%. В остальное время суток нагрузка на кабели не должна превышать номинальных значений.

Во время ликвидации аварий для кабелей напряжением до 10 кВ с бумажной изоляцией допускаются перегрузки в течение 5 сут в пределах, указанных в табл. 19.

Таблица 19.
Допустимые нагрузки кабельных линии напряжением до 10 кВ на время ликвидации аварии

Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%, а для кабельных линий напряжением 20—35 кВ перегрузки не допускаются.

В процессе эксплуатации кабельных линий необходимо осуществлять контроль за нагрузками стационарными амперметрами в установленные сроки и записывать показания приборов в ведомость.

Для наглядности на стационарных щитовых амперметрах красной чертой отмечается предельно допустимый ток кабельной линии, что дает возможность обслуживающему персоналу принимать соответствующие меры при превышении этого значения.

Измерение нагрузок кабельных линий и напряжений в различных точках сети должны производиться не менее двух раз в год, в том числе в период максимума нагрузок. Первое измерение следует производить в декабре — январе, т. е. в период годового максимума нагрузок. Эти измерения служат основанием для составления плана работ по разгрузке кабельных линий и улучшению режима их работы. По замерам определяют потери электрической энергии в сети и другие технико-экономические показатели кабельных линий. Второе измерение нагрузок кабельных линий целесообразно производить в мае, т. е. в период годового минимума нагрузок.

Помимо указанных планируемых измерений нагрузок кабельных линий производят внеочередные измерения, когда изменяют схему или присоединяют дополнительные токоприемники, в связи с чем меняют режим работы кабельной линии. Результаты измерений нагрузок кабельных линий служат основанием для проведения мероприятий, обеспечивающих их безаварийную работу.

Кабель ВБВ 3х50+1х25

Силовой кабель ВБВ 3х50+1х25

Ваша заявка на кабель ВБВ 3х50+1х25 успешно отправлена. Представитель компании «Рузкабель» свяжется с вами в ближайшее время!

Технические характеристики ВБВ 3*50+1*25

Вес кабеля ВБВ 3х50+1х25

Теоретический вес 1 километра ВБВ 3х50+1х25: требует уточнения.

Вес кабеля зависит от ТУ конкретного завода-производителя, в конце страницы вы можете ознакомиться с производителями у которых можно уточнить информацию.

Кабели должны быть намотаны на барабаны. Допускается кабели с жилами номинальным сечением до 16 мм 2 включительно сматывать в бухты.

Масса бухты не должна превышать 50 килограмм.

Диаметр кабеля ВБВ 3х50+1х25

Наружный диаметр кабеля ВБВ 3х50+1х25: требует уточнения.

Внешний диаметр сечения зависит от ТУ конкретного завода, в конце страницы вы можете ознакомиться с производителями, у которых можно уточнить информацию.

Размеры кабеля учитываются при расчёте и правильном подборе кабеленесущих систем.

Электрические характеристики ВБВ 3х50+1х25

Токовая нагрузка ВБВ 3х50+1х25

Длительно-допустимые токовые нагрузки

Мощность ВБВ 3х50+1х25

Максимальная мощность при прокладке:

Расчет допустимых токовых нагрузок выполняют при следующих расчетных условиях:

  • переменный ток;
  • температура окружающей среды при прокладке кабелей на воздухе 25 °C, при прокладке в земле – 15 °C;
  • глубина прокладки кабелей в земле 0,7 м;
  • удельное термическое сопротивление грунта 1,2 км/Вт.

Ток короткого замыкания ВБВ 3х50+1х25

Допустимый ток односекундного короткого замыкания ВБВ 3х50+1х25: 5,23 кА (килоампер)

При продолжительности короткого замыкания, отличающейся от 1 секунды, значение будет равно 0.18*K, где: K=1/√r, r – продолжительность короткого замыкания в секундах.

Максимальная продолжительность короткого замыкания не должна превышать 5 секунд.

Общие технические характеристики ВБВ 3х50+1х25

Характеристики ВБВ 3х50+1х25

Допустимые температуры нагрева токопроводящих жил кабеля:

Расшифровка ВБВ 3х50+1х25

трёхжильный + 1 дополнительная жила;

площадь поперечного сечения силовой жилы + площадь поперечного сечения дополнительной жилы (мм 2 ).

ВБВ-ХЛ 3х50+1х25 — холодостойкое исполнение (температура эксплуатации до -60 °С)

ВБВ 3х50+1х25 — тропическое исполнение (стойкость к воздействию плесневых грибов)

Маркировка ВБВ 3х50+1х25

Изолированные жилы кабелей должны иметь отличительную расцветку. Расцветка должна быть сплошной или в виде продольной полосы шириной не менее 1 мм. Цвет изоляции жил многожильных кабелей должен соответствовать ГОСТ 31996-2012.

Расцветка жил возможна в 2-х вариантах

Цвет жил: Серый * или Белый * Коричневый или Красный Черный Синий

Цвет жил: Серый * или Белый * Коричневый или Красный Черный Зеленый-Желтый **

(** — по согласованию с заказчиком)

Расшифровка ВБВ 3х50+1х25

Конструкция ВБВ 3х50+1х25

  1. 1. Четыре медных токопроводящих жилы

Минимальное число проволок (круглая) жила 6 шт

Диаметр жилы (макс.) 8,6 мм

Электрическое сопротивление 1 км жилы при температуре 20 °С 0,387 Ом

Масса меди в 1 метре жилы 0,405 кг

Минимальное число проволок (круглая) жила 1 шт

Диаметр жилы (мин.-макс.) 7,2-7,8 мм

Электрическое сопротивление 1 км жилы при температуре 20 °С 0,387 Ом

Масса меди в 1 метре жилы 0,405 кг

Номинальная толщина изоляции 1,4 мм

Минимальная толщина изоляции 1,16 мм

Читайте так же:
Как сделать включение света от двух выключателей

Сопротивление изоляции 4,8 МОм

Конструкция многопроволочного кабеля ВБВ 3х50+1х25 Конструкция однопроволочного кабеля ВБВ 3х50+1х25

Применение ВБВ 3х50+1х25

  • Кабели предназначены для передачи и распределения электроэнергии в стационарных электротехнических установках на номинальное переменное напряжение 0,66 и 1 кВ номинальной частотой 50 Гц
  • Для прокладки без ограничения разности уровней по трассе прокладки, в том числе на вертикальных участках
  • Для эксплуатации в электрических сетях переменного напряжения с заземлённой или изолированной нейтралью, в которых продолжительность работы в режиме однофазного короткого замыкания на землю не превышает 8 часов, а общая продолжительность работы в режиме однофазного короткого замыкания на землю не превышает 125 часов за год
  • Для одиночной прокладки в кабельных сооружениях и производственных помещениях. Групповая прокладка разрешается только в наружных электроустановках и производственных помещениях, где возможно лишь периодическое присутствие обслуживающего персонала, при этом необходимо применять пассивную огнезащиту
  • Класс пожарной опасности по ГОСТ 31565-2012: О1.8.2.5.4
  • Применяются при наличии опасности механических повреждений кабеля

ГОСТ ВБВ 3х50+1х25

Ниже представлены государственные стандарты для ВБВ 3х50+1х25, в соответствии с которыми мы собрали технические характеристики, представленные на данной странице.

От чего зависит длительно допустимый ток кабеля

От чего зависит длительно допустимый ток кабеля? Для ответа на этот вопрос нам придется рассмотреть переходные тепловые процессы, происходящие в условиях когда про проводнику течет электрический ток. Нагрев и охлаждение проводника, его температура, связь с сопротивлением и сечением, — все это станет предметом данной статьи.

Переходный процесс

Для начала рассмотрим обычный цилиндрический проводник длиной L, диаметром d, площадью поперечного сечения F, сопротивлением R, объемом V, равным, очевидно, F*L, по которому течет ток I, удельная теплоемкость металла, из которого изготовлен проводник — C, масса проводника равна

где Ω — плотность металла проводника, S = пи*d*L – площадь боковой стенки, через которую происходит охлаждение, Тпр — текущая температура проводника, Т0 — температура окружающей среды, и, соответственно, T = Тпр — Т0 — изменение температуры. Ктп — коэффициент теплопередачи, численно характеризующий количество теплоты, передаваемое с единицы поверхности проводника за 1 секунду при разности температур в 1 градус.

На рисунке показаны графики изменения тока и температуры в проводнике с течением времени. С момента времени t1 до момента времени t3, по проводнику протекал ток I.

Здесь можно видеть, как после включения тока температура проводника постепенно повышается, и в момент времени t2 она перестает нарастать, стабилизируется. Но после отключения тока в момент времени t3, температура начинает постепенно спадать, и в момент времени t4 она снова становится равна исходному значению (T0).

Так, можно записать для процесса нагрева проводника уравнение теплового баланса, дифференциальное уравнение, где будет отражено, что тепло, выделившееся на проводнике, частично поглощается самим проводником, а частично — отдается окружающей среде. Вот это уравнение:

В левой части уравнения (1) — количество теплоты, выделившееся в проводнике за время dt, прохождения по нему тока I.

Первое слагаемое в правой части уравнения (2) — количество теплоты, поглощенное материалом проводника, от которого температура проводника увеличилась на dT градусов.

Второе слагаемое правой части уравнения (3) — количество теплоты, которое было передано от проводника окружающей среде за время dt, и оно связано с площадью поверхности проводника S и с разницей температур Т через коэффициент теплопроводности Ктп.

Сначала, при включении тока, все выделяющееся в проводнике тепло идет на нагрев непосредственно проводника, что и приводит к росту его температуры, и это связано с теплоемкостью С материала проводника.

С ростом температуры разность температур Т между самим проводником и окружающей средой соответственно увеличивается, и выделяющееся тепло частично идет уже и на повышение температуры окружающей среды.

Когда температура проводника достигает установившегося стабильного значения Туст, в этот момент все выделяющееся с поверхности проводника тепло передается окружающей среде, поэтому температура проводника больше не растет.

Решением дифференциального уравнения теплового баланса будет:

На практике сей переходный процесс длится не более трех постоянных времени (3*τ), и через это время температура достигает 0,95*Туст. Когда переходный процесс нагрева прекращается, уравнение теплового баланса упрощается, и установившуюся температуру можно легко выразить:

Длительно допустимый ток

Теперь можно подойти к тому, какого именно значения ток представляется длительно допустимым током для проводника или кабеля. Очевидно, для каждого проводника или кабеля есть определенная нормальная длительная температура, согласно его документации. Это такая температура, при которой кабель или провод может без вреда для себя и для окружающих находиться непрерывно и долго.

Из приведенного выше уравнения становится ясно, что такой температуре ставится в соответствие конкретное значение тока. Этот ток и называется длительно допустимым током кабеля. Это такой ток, который при прохождении по проводнику в течение длительного времени (более трех постоянных времени) нагревает его до допустимой, то есть нормальной температуры Тдд.

Здесь: Iдд — длительно допустимый ток проводника; Тдд — допустимая температура проводника.

Для решения практических задач удобнее всего длительно допустимый ток определять по специальным таблицам из ПУЭ.

Вид проводникаДлительно допустимая температураКратковременно допустимая температура
Голый проводник или шина70 о СМедь — 300 о С
Голый проводник или шина70 о САлюминий — 200 о С
Кабель в бумажной изоляции до 3 кВ80 о С200 о С
Кабель в бумажной изоляции до 6 кВ65 о С200 о С
Кабель в бумажной изоляции до 10 кВ60 о С200 о С
Кабель в бумажной изоляции до 35 кВ50 о С125 о С
Кабель в резиновой изоляции до 1 кВ65 о С150 о С
Кабель в ПВХ изоляции до 1 кВ65 о С150 о С
Кабель в изоляции из сшитого полиэтилена до 1 кВ90 о С250 о С

В случае короткого замыкания через проводник течет значительный ток короткого замыкания, который может существенно нагреть проводник, превысив его нормальную температуру. По этой причине для проводников характерно минимальное сечение исходя из условия кратковременного нагрева проводника током короткого замыкания:

Здесь: Iк — ток короткого замыкания в амперах; tп — приведенное время действия тока короткого замыкания в секундах; С — коэффициент, который зависит от материала и конструкции проводника, и от кратковременно допустимой температуры.

Электрический кабель в магазине

Связь с сечением

Теперь посмотрим, как зависит длительно допустимый ток от сечения проводника. Выразив площадь боковой стенки через диаметр проводника (формулы в начале статьи), приняв, что сопротивление связано с площадью сечения и удельным сопротивлением материала проводника, и подставив всем известную формулу для сопротивления в формулу для Iдд, приводимую выше, получим для длительно допустимого тока Iдд формулу:

Легко видеть, что связь длительно допустимого тока проводника Iдд с сечением F отнюдь не прямо пропорциональная, здесь площадь сечения возведена в степень ¾, а это значит, что длительно допустимый ток возрастает медленнее, чем сечение проводника. Остальные константы, такие как удельное сопротивление, коэффициент теплопередачи, допустимая температура — для каждого проводника индивидуальны по определению.

На самом деле, так и есть, зависимость не может быть прямой, ведь чем сечение проводника оказывается больше, тем более ухудшаются условия охлаждения внутренних слоев проводника, потому и допустимая температура достигается при меньшей плотности тока.

Если во избежание перегрева использовать проводники увеличенного сечения, это приведет к перерасходу материала. Гораздо выгоднее применять несколько проводников небольшого сечения, уложенных параллельно, то есть использовать многожильные проводники или кабели. А связь длительно допустимого тока и площади сечения в целом получается вот такой:

F124
I дд11,682,83

Ток и температура

Для расчета температуры проводника при известном токе и заданных внешних условиях, рассматривают установившийся режим, когда температура проводника достигла значения Туст, и больше не растет. Исходные данные — ток I, коэффициент теплопередачи Ктп, сопротивление R, площадь боковой стенки S, температура окружающей среды Т0:

Аналогичный расчет для длительно допустимого тока:

Здесь за Т0 принимают расчетную температуру окружающей среды, например +15°C для прокладки под водой и в земле, или +25°C для прокладки на открытом воздухе. Результаты таких расчетов приводятся в таблицах длительно допустимых токов, и для воздуха принимают температуру в +25°C, поскольку это средняя температура наиболее жаркого месяца.

Разделив первое уравнение на второе, и выразив температуру проводника, можно получить формулу для нахождения температуры проводника при токе, отличном от длительно допустимого, и при заданной температуре окружающей среды, если длительно допустимый ток и длительно допустимая температура известны, и не нужно прибегать к использованию других констант:

Из данной формулы видно, что превышение температуры оказывается пропорционально квадрату тока, и если ток возрастет в 2 раза, то превышение температуры возрастет в 4 раза.

Электрический кабель в электрощите

Если внешние условия отличаются от расчетных

В зависимости от реальных внешних условий, которые могут отличаться от расчетных в зависимости от способа прокладки, например несколько параллельно расположенных проводников (кабель) или прокладка в земле при другой температуре, требуется корректировка предельно допустимого тока.

Тогда вводят поправочный коэффициент Кт, на который домножают длительно допустимый ток при известных (табличных) условиях. Если внешняя температура ниже расчетной, то коэффициент больше единицы, если выше расчетной, то, соответственно, и Кт меньше единицы.

При прокладке нескольких параллельных проводников очень близко друг к другу, они станут друг друга дополнительно подогревать, но только при условии неподвижной внешней среды вокруг. Реальные условия зачастую располагают к тому, что окружающая среда подвижна (воздух, вода), и конвекция приводит к охлаждению проводников.

Если же среда почти неподвижна, например при прокладке в трубе под землей или в коробе, то взаимный подогрев вызовет снижение длительно допустимого тока, и тут нужно снова ввести поправочный коэффициент Кn, который приводится в документации к кабелям и проводам.

Допустимый длительный ток для кабелей с пвх изоляцией

КАБЕЛИ СИЛОВЫЕ С ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ НА НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ 0,66; 1 и 3 кВ

Общие технические условия

Power cables with plastic insulation for rated voltages of 0,66; 1 and 3 kV. General specifications

Дата введения 2014-01-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении" (ФГУП "ВНИИНМАШ")

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 3 декабря 2012 г. N 54-П)

За принятие проголосовали:

Краткое наименование страны по MК (ИСО 3166) 004-97

Код страны по MК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1414-ст межгосударственный стандарт ГОСТ 31996-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

5 Настоящий стандарт соответствует международному стандарту IEC 60502-1:2004* Power cables with extruded insulation and their accessories for rated voltages from 1 kV (1,2 kV) up to 30 kV (36 kV) — Part 1: Cables for rated voltages of 1 kV (1,2 kV) and 3 kV (3,6 kV) (Кабели силовые с экструдированной изоляцией и арматура к ним на номинальное напряжение от 1 до 30 кВ включительно. Часть 1. Кабели на номинальное напряжение 1 и 3 кВ).

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

Степень соответствия — неэквивалентная (NEQ).

Стандарт подготовлен на основе применения ГОСТ Р 53769-2010

6 В настоящем стандарте использованы объекты патентного права — полезные модели Российской Федерации:

Патентообладатель — Открытое акционерное общество "Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности":

Номер и название патента на полезную модель (изобретение)

N 109316 "Кабель силовой"

N 167643 "Кабель электрический малоопасный по токсичности продуктов горения"

N 174055 "Кабель силовой"

N 174058 "Кабель силовой"

N 176109 "Кабель силовой"

N 2670099 "Кабель силовой"

N 175260 "Кабель силовой"

N 186787 "Кабель силовой"

N 188319 "Кабель силовой огнестойкий"

Патентообладатель — Общество с ограниченной ответственностью "Камский кабель":

Номер и название патента на полезную модель

N 176486 "Кабель силовой с токопроводящей жилой из алюминиевого сплава"

Межгосударственный совет по стандартизации, метрологии и сертификации не несет ответственности за достоверность информации о патентных правах. При необходимости ее уточнения патентообладатель может направить в национальный орган по стандартизации своего государства аргументированное предложение о внесении в настоящий стандарт поправки

(Измененная редакция, Изм. N 1 (Поправка. ИУС N 6-2021)).

7 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячно издаваемом информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 1, 2021, с Поправкой, опубликованной в ИУС N 6, 2021 год

1 Область применения

Настоящий стандарт распространяется на силовые кабели с пластмассовой изоляцией (далее — кабели), предназначенные для передачи и распределения электрической энергии в стационарных установках на номинальное переменное напряжение 0,66; 1 и 3 кВ номинальной частотой 50 Гц.

Стандарт устанавливает основные требования к конструкциям и техническим характеристикам кабелей, их эксплуатационные свойства и методы контроля.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 1579-93 (ИСО 7801-84) Проволока. Метод испытания на перегиб

ГОСТ 10446-80 (ИСО 6892-84) Проволока. Метод испытания на растяжение

ГОСТ 31565-2012 Кабельные изделия. Требования пожарной безопасности

ГОСТ IEC 60331-21-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Сохранение работоспособности. Часть 21. Проведение испытаний и требования к ним. Кабели на номинальное напряжение до 0,6/1,0 кВ включительно

ГОСТ IEC 60332-1-2-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 1-2. Испытание на нераспространение горения одиночного вертикально расположенного изолированного провода или кабеля. Проведение испытания при воздействии пламенем газовой горелки мощностью 1 кВт с предварительным смешением газов

ГОСТ IEC 60332-1-3-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 1-3. Испытание на нераспространение горения одиночного вертикально расположенного изолированного провода или кабеля. Проведение испытания на образование горящих капелек/частиц

ГОСТ IEC 60332-3-21-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-21. Распространение пламени по вертикально расположенным пучкам проводов или кабелей. Категория A F/R

ГОСТ IEC 60332-3-22-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-22. Распространение пламени по вертикально расположенным пучкам проводов или кабелей. Категория A

ГОСТ IEC 60332-3-23-2011 Испытания электрических и оптических кабелей в условиях воздействия пламени. Часть 3-23. Распространение пламени по вертикально расположенным пучкам проводов или кабелей. Категория B

ГОСТ IEC 60754-1-2015 Испытания материалов конструкции кабелей при горении. Часть 1. Определение количества выделяемых газов галогенных кислот

ГОСТ IEC 60754-2-2015 Испытания материалов конструкции кабелей при горении. Часть 2. Определение степени кислотности выделяемых газов измерением рН и удельной проводимости

ГОСТ IEC 60811-401-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 401. Разные испытания. Методы теплового старения. Старение в термостате

ГОСТ IEC 60811-402-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 402. Разные испытания. Испытания на водопоглощение

ГОСТ IEC 60811-409-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 409. Разные испытания. Испытание на потерю массы для термопластичных изоляции и оболочек

ГОСТ IEC 60811-501-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 501. Механические испытания. Испытания для определения механических свойств композиций изоляции и оболочек

ГОСТ IEC 60811-502-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 502. Механические испытания. Испытание изоляции на усадку

ГОСТ IEC 60811-504-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 504. Механические испытания. Испытания изоляции и оболочек на изгиб при низкой температуре

ГОСТ IEC 60811-505-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 505. Механические испытания. Испытания изоляции и оболочек на удлинение при низкой температуре

ГОСТ IEC 60811-507-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 507. Механические испытания. Испытание на тепловую деформацию для сшитых композиций

ГОСТ IEC 60811-508-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 508. Механические испытания. Испытание изоляции и оболочек под давлением при высокой температуре

ГОСТ IEC 60811-509-2015 Кабели электрические и волоконно-оптические. Методы испытаний неметаллических материалов. Часть 509. Механические испытания. Испытание изоляции и оболочек на стойкость к растрескиванию (испытание на тепловой удар)

ГОСТ IEC 61034-2-2011 Измерение плотности дыма при горении кабелей в заданных условиях. Часть 2. Метод испытания и требования к нему

ГОСТ 9.048-89 Единая система защиты от коррозии и старения. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов

ГОСТ 12.1.044-89 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.2.007.14-75 Система стандартов безопасности труда. Кабели и кабельная арматура. Требования безопасности

ГОСТ 15.309-98 Система разработки и постановки продукции на производство. Испытания и приемка выпускаемой продукции. Основные положения

ГОСТ 20.57.406-81 Комплексная система контроля качества. Изделия электронной техники, квантовой электроники и электротехнические. Методы испытаний

ТОКОВЫЕ НАГРУЗКИ НА КАБЕЛИ, ПРОВОДА И ШНУРЫ

Длительно допустимые токовые нагрузки на неизолированные провода и шины приведены в табл. 29.1—29.4; они приняты исходя из допустимой температуры их нагрева до 70 °С при температуре окружающей среды 25 °С. При расположении шин прямоугольного сечения шириной до 60 мм плашмя токовые нагрузки, указанные в табл. 29.3 и 29.4, необходимо уменьшать на 5%, а шин шириной более 60 мм — на 8 %.

Таблица 29.1. Токовая нагрузка, А, на неизолированные провода медные, алюминиевые, бронзовые и сталебронзовые

Алюминиевые А и АКП

Таблица 29.2. Токовая нагрузка на неизолированные сталеалюминевые провода АС, АСКС, АСК, АСКП

Суммарное сечение проволок, мм 2

Таблица 29.3. Токовая нагрузка на медные и алюминиевые шины прямоугольного сечения при различном числе полос на полюс или фазу

Примечание. В числителе приведена токовая нагрузка при работе на переменном токе, в знаменателе — на постоянном.

Таблица 29.4. Токовая нагрузка на стальные шины прямоугольного сечения

Примечание. В числителе указана токовая нагрузка при работе на переменном, в знаменателе — на постоянном токе

29.2. ДЛИТЕЛЬНО ДОПУСТИМЫЕ ТОКОВЫЕ НАГРУЗКИ НА СИЛОВЫЕ КАБЕЛИ С БУМАЖНОЙ ПРОПИТАННОЙ ИЗОЛЯЦИЕЙ

Длительно допустимые токовые нагрузки на силовые кабели с бумажной изоляцией в алюминиевой или свинцовой оболочке приняты исходя из допустимой температуры нагрева жил кабелей при номинальном напряжении до 3 кВ не более 80 °С, на напряжение 6 кВ не более 65, на 10 не более 60, на 20 и 25 кВ не более 50.Допустимые токовые нагрузки приведены в табл. 29.5—29.10. Они приняты из расчета прокладки кабеля в траншее на глубине 0,7 — 1,0 м не более одного кабеля при температуре земли 15°С и удельном сопротивлении земли 1,2 м * °С/Вт, в воде — при температуре последней 15 °С, в воздухе — внутри и снаружи зданий при любом числе проложенных кабелей и температуре 25 °С.

При иных условиях прокладки следует вводить поправочный коэффициент для указанных допустимых токов нагрузки, пользуясь табл. 29.11.

Допустимые токовые нагрузки на одиночные силовые кабели, прокладываемые в трубах в земле без искусственной вентиляции, следует выбирать как для тех же кабелей, прокладываемых в воздухе, а при смешанном характере прокладки нагрузки — как для участка с наихудшими тепловыми условиями, если длина кабеля больше 10 м. В таких случаях рекомендуется применять вставки отрезков кабеля большего сечения.

При прокладке нескольких кабелей в земле (в том числе и при прокладке в трубах) длительно допустимые нагрузки необходимо уменьшать, применив коэффициенты, приведенные в табл. 29.12, без учета резервных кабелей. Прокладка нескольких кабелей в земле при расстоянии между ними менее 100 мм не рекомендуется. Допустимые токовые нагрузки на силовые маслонаполненные, газонаполненные и бронированные одножильные кабели и другие кабели новых конструкций устанавливаются разработчиками этих конструкций.

Допустимые длительные токовые нагрузки на кабели, прокладываемые в блоках, определяют по формуле:

где I — ток, определяемый по табл. 29.13;

а — коэффициент, выбираемый по табл. 29.14 в зависимости от сечения кабеля и расположения его в блоке;

b — коэффициент, выбираемый в зависимости от номинального напряжения кабеля; до 3 кВ — 1,09; 6 кВ — 1,05; 10 кВ — 1,0;

с — коэффициент, выбираемый в зависимости от среднесуточной нагрузки всего блока, а именно: 1,07 при отношении Scp,cyт/Sном, равном 0,85, и 1,16 при Sном, равном 0,7.

Нагрузки на кабели, прокладываемые в двух параллельных блоках одинаковой конфигурации, уменьшаются путем умножения на следующие коэффициенты:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector