Nashidvery.ru

Наши Двери
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электропроводность диэлектриков

Электропроводность диэлектриков

Электроизоляционные материалы, применяемые в технике, не являются идеальными диэлектриками в связи с присущей им небольшой электропроводностью.

Поляризационные процессы смещения связанных зарядов в диэлектрике протекают во времени до момента установления равновесия и создают токи смещения (токи поляризации). В случае электронной и ионной поляризаций эти токи практически не удается зафиксировать приборами. Токи смещения различных видов замедленной поляризации, наблюдаемые в большинстве технических диэлектриков, называют токами абсорбции. При приложении постоянного напряжения они наблюдаются только при включении и выключении, меняя свое направление

Наличие в технических диэлектриках небольшого числа свободных зарядов приводит к возникновению малых по величине сквозных токов.

Следовательно, в диэлектрике протекают абсорбционный ток (iабс), обусловленный смещением связанных зарядов, и сквозной ток (iскв) за счет направленного перемещения свободных носителей зарядов. Ток, протекающий в диэлектрике под действием внешнего электрического поля, называется током утечки (iут).

Плотность тока утечки в диэлектриках определяется суммой сквозного тока и тока абсорбции (А/м 2 ):

(9)

На рис.14 приведена зависимость изменения тока утечки в диэлектрике после приложения к нему постоянного напряжения.

Рис. 14. Зависимость тока через диэлектрик от времени

Как следует из рис.14, ток абсорбции изменяется c течением времени (t) по закону затухающей экспоненты. После окончания процессов поляризации через диэлектрик протекает только сквозной ток.

Сопротивление диэлектрика, называемое сопротивлением изоляции Rиз, определяется только величиной сквозного тока и определяется по формуле:

(10)

где U – приложенное постоянное напряжение.

Следовательно, для оценки состояния изоляции необходимо измерять ток утечки спустя некоторое время после приложения напряжения, когда закончатся поляризационные процессы и ток абсорбции спадет до нуля. На практике измерение тока утечки производят через одну минуты после приложения к диэлектрику постоянного напряжения, считая, что процессы замедленной поляризации закончились. Следует иметь в виду, что при приложении к диэлектрику переменного электрического поля поляризация будет продолжаться до снятия поля.

Особенностью электропроводности диэлектриков является ее ионный характер (ионы переносят с собой часть вещества).

Для твердых электроизоляционных материалов различают объемную и поверхностную электропроводности и соответственно объемное и поверхностное сопротивления. Объемная электро-проводность обусловлена свойствами самого диэлектрика. Поверхностная же электропроводность обусловлена присутствием на поверхности диэлектрика влаги и различных загрязнений. Поскольку вода отличается значительной электропроводностью, то даже тончайший слой влаги на поверхности диэлектрика приводит к появлению заметной проводимости, определяемой в основном толщиной увлажненного слоя.

Поскольку толщина адсорбированного слоя влаги и его сопротивление связаны с природой материала, на поверхности которого находится этот слой, то поверхностную электропроводность обычно рассматривают как свойство самого диэлектрика. Поверхностная электропроводность тем ниже, чем меньше полярность вещества, чем чище поверхность диэлектрика и чем лучше она отполирована. Наиболее высокими значениями поверхностного сопротивления обладают неполярные диэлектрики, поверхность которых не смачивается водой. Пониженное значение поверхностного сопротивления можно наблюдать у полярных диэлектриков, частично растворимых в воде, у которых на поверхности образуется пленка электролита. Кроме того, к поверхности полярных диэлектриков притягиваются и оседают на ней различные загрязнения.

Читайте так же:
Как собрать вилку розетки с тремя проводами для обогревателя

Адсорбция влаги на поверхности диэлектрика находится в тесной зависимости от относительной влажности окружающего воздуха. Особенно резкое увеличение поверхностной проводимости наблюдается при относительной влажности воздуха, превышающей 70–80% (рис. 15).

Рис. 15. Зависимость удельного поверхностного сопротивления твердого диэлектрика от относительной влажности воздуха: 1 – неполярный; 2 — полярный; 3 – частично растворимый полярный диэлектрик

Для сравнительной оценки различных материалов по их объемной и поверхностной электропроводности, пользуются значениями удельного объемного сопротивления ρ и удельного поверхностного сопротивления ρS.

В системе СИ удельное объемное сопротивление ρ численно равно сопротивлению куба с ребром в 1 м, вырезанного реально или мысленно из исследуемого материала, если ток проходит сквозь куб от одной его грани к противоположной. Единица измерения удельного объемного сопротивления Ом·м. Если для измерения берется не куб, а плоский образец материала, то при однородном поле удельное объемное сопротивление рассчитывается по формуле:

(11)

где R — объемное сопротивление образца, Ом; S — площадь электрода, м 2 ; h — толщина образца, м.

Объемное сопротивление образца будет равно:

(12)

Удельное поверхностное сопротивление численно равно сопротивлению квадрата любых размеров, мысленно или реально выделенного на поверхности исследуемого материала, если ток проходит через квадрат от одной его стороны к противоположной. Единица измерения удельного поверхностного сопротивления Ом. Если для измерения берется не квадрат, а прямоугольник, то удельное поверхностное сопротивление в Ом рассчитывается по формуле:

(13)

где Rs поверхностное сопротивление образца материала, Ом,

d – ширина электродов, l – расстояние между электродами.

Поверхностное сопротивление будет равно:

(14)

По удельному объемному сопротивлению можно определить удельную объемную проводимость:

(15)

Удельная поверхностная проводимость определяется аналогично:

(16)

Удельная поверхностная проводимость измеряется в сименсах (См), а удельная объемная проводимость – См·м -1 .

При длительной работе диэлектрика под напряжением сквозной ток через жидкие и твердые диэлектрики может уменьшаться или увеличиваться. Уменьшение сквозного тока характеризует увеличение сопротивления изоляции за счет электрической очистки образца. Слабо закрепленные ионы примесей даже в слабых электрических полях ионизируются и постепенно осаждаются на электродах.

Увеличение сквозного тока происходит вследствие старения материала, под которым понимают необратимое ухудшение изоляционных свойств (уменьшение сопротивления изоляции), что в конечном итоге, может привести к пробою диэлектрика.

Дата добавления: 2017-01-08 ; просмотров: 4598 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Читайте так же:
Дизайн квартир с розетками

Ток смещения (электродинамика)

Ток смещения, или абсорбционный ток, — величина, прямо пропорциональная скорости изменения электрической индукции. Это понятие используется в классической электродинамике. Введено Дж. К. Максвеллом при построении теории электромагнитного поля.

Введение тока смещения позволило устранить противоречие [1] в формуле Ампера для циркуляции магнитного поля, которая после добавления туда тока смещения стала непротиворечивой и составила последнее уравнение, позволившее корректно замкнуть систему уравнений (классической) электродинамики.

Строго говоря, ток смещения не является [3] электрическим током, но измеряется в тех же единицах, что и электрический ток.

Точная формулировка [ править | править код ]

В вакууме, а также в любом веществе, в котором можно пренебречь поляризацией либо скоростью её изменения, током смещения J D > (с точностью до универсального постоянного коэффициента) называется [4] поток вектора быстроты изменения электрического поля ∂ E / ∂ t /partial t> через некоторую поверхность [5] s :

В диэлектриках (и во всех веществах, где нельзя пренебречь изменением поляризации) используется следующее определение:

где D — вектор электрической индукции (исторически вектор D назывался электрическим смещением, отсюда и название «ток смещения»)

Соответственно, плотностью тока смещения в вакууме называется величина

а в диэлектриках — величина

В некоторых книгах плотность тока смещения называется просто «током смещения».

Ток смещения и ток проводимости [ править | править код ]

В природе можно выделить два вида токов: ток связанных зарядов и ток проводимости.

Ток связанных зарядов — это перемещение средних положений связанных электронов и ядер, составляющих молекулу, относительно центра молекулы.

Ток проводимости — это направленное движение на большие расстояния свободных зарядов (например, ионов или свободных электронов). В случае, если этот ток идёт не в веществе, а в свободном пространстве, нередко вместо термина «ток проводимости» употребляют термин «ток переноса». Иначе говоря, ток переноса или ток конвекции обусловлен переносом электрических зарядов в свободном пространстве заряженными частицами или телами под действием электрического поля.

Во времена Максвелла ток проводимости мог быть экспериментально зарегистрирован и измерен (например, амперметром, индикаторной лампой), тогда как движение связанных зарядов внутри диэлектриков могло быть лишь косвенно оценено.

Сумма тока связанных зарядов и быстроты изменения потока электрического поля была названа током смещения в диэлектриках.

При разрыве цепи постоянного тока и включении в неё конденсатора ток в разомкнутом контуре отсутствует. При питании такого разомкнутого контура от источника переменного напряжения в нём регистрируется переменный ток (при достаточно высокой частоте и ёмкости конденсатора загорается лампа, включённая последовательно с конденсатором). Для описания «прохождения» переменного тока через конденсатор (разрыв по постоянному току) Максвелл ввёл понятие тока смещения.

Читайте так же:
Где расположить розетку для варочной панели

Ток смещения существует и в проводниках, по которым течёт переменный ток проводимости, однако в данном случае он пренебрежимо мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально русским физиком А. А. Эйхенвальдом, изучившим магнитное поле тока поляризации, который является частью тока смещения. В общем случае, токи проводимости и смещения в пространстве не разделены, они находятся в одном и том же объеме. Поэтому Максвелл ввёл понятие полного тока, равного сумме токов проводимости (а также конвекционных токов) и смещения. Плотность полного тока:

где j — плотность тока проводимости, jD — плотность тока смещения [6] .

В диэлектрике (например, в диэлектрике конденсатора) и в вакууме нет токов проводимости. Поэтому в этом частном случае приведенная выше формула Максвелла сводится к:

Удельные объёмное и поверхностное сопротивления твердых диэлектриков

Рассматривая образец из твердого диэлектрика, можно выделить два принципиально возможных пути для протекания электрического тока: по поверхности данного диэлектрика и через его объем. С этой точки зрения можно оценить способность диэлектрика проводить электрический ток в данных направлениях, применив понятия поверхностного и объемного сопротивлений.

Объемное сопротивление — это сопротивление, которое проявляет диэлектрик при протекании постоянного тока через его объем.

Поверхностное сопротивление — это сопротивление, которое проявляет диэлектрик при протекании постоянного тока по его поверхности. И поверхностное, и объемное сопротивление — определяются экспериментальным путем.

Удельные объёмное и поверхностное сопротивления твердых диэлектриков

Величина удельного объемного сопротивления диэлектрика численно равна сопротивлению куба, изготовленного из данного диэлектрика, ребро которого имеет длину 1 метр, при условии протекания постоянного тока через две его противоположные грани.

Желая измерить объемное сопротивление диэлектрика, экспериментатор наклеивает на противоположные грани кубического образца диэлектрика металлические электроды.

Площадь электродов принимается равной S, а толщина образца — h. Электроды в эксперименте устанавливаются внутри охранных металлических колец, которые обязательно заземляются, чтобы устранить влияние поверхностных токов на точность проводимых измерений.

Экспериментальное определение сопротивления диэлектрика

Когда электроды и охранные кольца установлены с соблюдением всех надлежащих условий эксперимента, на электроды подают постоянное напряжение U с калиброванного источника постоянного напряжения, и выдерживают так на протяжении 3 минут, чтобы в образце диэлектрика наверняка завершились процессы поляризации.

После этого, не отключая источник постоянного напряжения, измеряют напряжение и сквозной ток при помощи вольтметра и микроамперметра. Далее рассчитывают объемное сопротивление диэлектрического образца по следующей формуле:

Объемное сопротивление

Объемное сопротивление измеряется в омах.

Поскольку площадь электродов известна, она равна S, толщина диэлектрика также известна, она равна h, и объемное сопротивление Rv только что было измерено, то теперь можно найти удельное объемное сопротивление диэлектрика (оно измеряется в Ом*м) по следующей формуле:

Удельное объемное сопротивление диэлектрика

Чтобы найти удельное поверхностное сопротивление диэлектрика, сначала находят поверхностное сопротивление конкретного образца. Для этого на образец наклеивают два металлических электрода длиной l на расстоянии d между ними.

Читайте так же:
Какая розетка для подключения плиты

После этого на приклеенные электроды подают постоянное напряжение U от источника постоянного напряжения, выдерживают так 3 минуты чтобы процессы поляризации в образце наверняка завершились, и измеряют напряжение при помощи вольтметра, и ток — при помощи амперметра.

Наконец, рассчитывают поверхностное сопротивление в омах по формуле:

Поверхностное сопротивление

Теперь для нахождения удельного поверхностного сопротивления диэлектрика необходимо исходить из того, что оно численно равно поверхностному сопротивлению квадратной поверхности данного материала, если ток протекает между электродами, установленными на сторонах этого квадрата. Тогда удельное поверхностное сопротивление будет равно:

Удельное поверхностное сопротивление

Удельное поверхностное сопротивление измеряется в омах.

Удельное поверхностное сопротивление диэлектрика является характеристикой диэлектрического материала и зависит от химического состава диэлектрика, его текущей температуры, влажности и от напряжения, которое приложено к его поверхности.

Сухость поверхности диэлектрика играет огромную роль. Тончайшего слоя воды на поверхности образца достаточно чтобы проявилась заметная проводимость, которая будет зависеть от толщины данного слоя.

Поверхностная проводимость в основном обусловлена наличием загрязнений, дефектов и влаги на поверхности диэлектрика. Пористые и полярные диэлектрики подвержены увлажнению больше других. Удельное поверхностное сопротивление таких материалов связано с величиной твердости и краевого угла смачивания диэлектрика.

Ниже приведена таблица, из которой очевидно, что более твердые диэлектрики с меньшим краевым углом смачивания обладают меньшим удельным поверхностным сопротивлением в увлажненном состоянии. С данной точки зрения диэлектрики подразделяются на гидрофобные и гидрофильные.

Удельное поверхностное сопротивление диэлектриков

Гидрофобными являются неполярные диэлектрики, которые при чистой поверхности не смачиваются водой. По этой причине даже если поместить такой диэлектрик во влажную среду, то его поверхностное сопротивление практически не поменяется.

Гидрофильными являются полярные и большинство ионных диэлектриков, обладающие смачиваемостью. Если поместить гидрофильный диэлектрик во влажную среду, то его поверхностное сопротивление уменьшится. Тут же ко влажной поверхности легко прилипнут разнообразные загрязнения, которые также могут способствовать снижению поверхностного сопротивления.

Есть и промежуточные диэлектрики, к ним относятся слабополярные материалы, такие как лавсан.

Если увлажненную изоляцию нагреть, то ее поверхностное сопротивление может начать расти с повышением температуры. Когда изоляция высохнет — сопротивление может уменьшится. Низкие температуры способствуют увеличению поверхностного сопротивления диэлектрика в высушенном состоянии на 6-7 порядков, если сравнивать с тем же материалом, только увлажненным.

Чтобы повысить поверхностное сопротивление диэлектрика, прибегают к разнообразным технологическим приемам. Например образец можно промыть в растворителе или в кипящей дистиллированной воде, в зависимости от вида диэлектрика, либо прогреть до достаточно высокой температуры, покрыть поверхность влагостойким лаком, глазурью, поместить в защитную оболочку, корпус и т. п.

Читайте так же:
Какая коронка идет под розетку по гипсокартону

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Как определить постоянный ток через диэлектрик

Если замкнуть ключ (рис. 6.1), то лампа при постоянном токе гореть не будет: емкость C – разрывает цепь постоянного тока. Но вот в моменты включения лампа будет вспыхивать.

При переменном токе – лампа горит, но в то же время нам ясно, что электроны из одной обкладки в другую не переходят – между ними изолятор (или вакуум). А вот если бы взять прибор, измеряющий магнитное поле, то в промежутке между обкладками мы обнаружили бы магнитное поле (рис. 7.2).

Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение ток смещения. Этот термин имеет смысл в таких веществах, как, например, диэлектрики. Там смещаются заряды под действием электрического поля. Но в вакууме зарядов нет – там смещаться нечему, а магнитное поле есть. То есть название Максвелла «ток смещения» – не совсем удачное, но смысл, вкладываемый в него Максвеллом, – правильный.

Максвелл сделал вывод: всякое переменное электрическое поле порождает переменное магнитное поле.

Токи проводимости в проводнике замыкаются токами смещения в диэлектрике или в вакууме. Переменное электрическое поле в конденсаторе создает такое же магнитное поле, как если бы между обкладками существовал ток проводимости, имеющий величину, равную току в металлическом проводнике.

Это утверждение позволяет (на базе нашего примера с конденсатором) найти величину тока смещения. В свое время мы с вами доказали, что поверхностная плотность поляризационных зарядов σ равна – вектору электрического смещения:

,(7.2.2)

Полный заряд на поверхности диэлектрика и, следовательно, на обкладках конденсатора (S – площадь обкладки)

,(7.2.3)

т.е. ток смещения пропорционален скорости изменения вектора электрического смещения . Поэтому он и получил такое название – ток смещения.

Плотность тока смещения

,(7.2.4)

Вихревое магнитное поле ( ) образующееся при протекании тока смещении, связано с направлением вектора правилом правого винта (рис. 7.2).

Из чего складывается ток смещения?

Из раздела «Электростатика и постоянный ток» (п. 4.3), известно, что относительная диэлектрическая проницаемость среды где χ – диэлектрическая восприимчивость среды. Тогда

или

Отсюда видно, что вектор поляризации. Следовательно

,(7.2.5)

В этой формуле – плотность тока смещения в вакууме; плотность тока поляризации, т.е. плотность тока, обусловленная перемещением зарядов в диэлектрике.

Аудио-видео демонстрации по теме или смежным темам: 1. Солнечная корона. 2. Солнечная плазма.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector